Downregulation of cytoskeletal muscle LIM protein by nitric oxide: impact on cardiac myocyte hypertrophy.

نویسندگان

  • Jörg Heineke
  • Tibor Kempf
  • Theresia Kraft
  • Andres Hilfiker
  • Henning Morawietz
  • Robert J Scheubel
  • Pico Caroni
  • Suzanne M Lohmann
  • Helmut Drexler
  • Kai C Wollert
چکیده

BACKGROUND In chronic heart failure, myocardial expression of the inducible isoform of nitric oxide (NO) synthase (NOS2) is enhanced, leading to a sustained production of NO. We postulated that NO modulates expression of genes in cardiac myocytes that may be functionally important in the context of cardiac hypertrophy and failure. METHODS AND RESULTS As revealed by cDNA expression array analyses, the NO donor SNAP, which has been shown previously to inhibit agonist-induced cardiac myocyte hypertrophy, downregulates expression of the cytoskeleton-associated muscle LIM protein (MLP) in endothelin-1 (ET-1)-stimulated neonatal rat cardiac myocytes. Northern blotting and immunoblotting experiments confirmed this finding and established that SNAP negatively controls MLP mRNA (-49%, P<0.01) and protein (-52%, P<0.01) abundance in ET-1-treated cardiomyocytes via cGMP-dependent protein kinase and superoxide/peroxynitrite-dependent signaling pathways. Treatment of cardiac myocytes with IL-1beta and IFN-gamma downregulated MLP expression levels via induction of NOS2. Moreover, expression levels of NOS2 and MLP were inversely correlated in the failing human heart, indicating that NOS2 may regulate MLP abundance in vitro and in vivo. Antisense oligonucleotides were used to explore the functional consequences of reduced MLP expression levels in cardiac myocytes. Like SNAP, antisense downregulation of MLP protein expression (-52%, P<0.01) blunted the increases in protein synthesis, cell size, and sarcomere organization in response to ET-1 stimulation. Conversely, overexpression of MLP augmented cell size and sarcomere organization in cardiac myocytes. CONCLUSIONS NO negatively controls MLP expression in cardiac myocytes. Because MLP is necessary and sufficient for hypertrophy and sarcomere assembly, MLP downregulation may restrain hypertrophic growth in pathophysiological situations with increased cardiac NO production.

منابع مشابه

Deficiency of different nitric oxide synthase isoforms activates divergent transcriptional programs in cardiac hypertrophy.

Decreased nitric oxide synthase (NOS) activity induces left ventricular hypertrophy (LVH), but the transcriptional pathways mediating this effect are unknown. We hypothesized that specific NOS isoform deletion (NOS3 or NOS1) would activate different transcriptional programs in LVH. We analyzed cardiac expression profiles (Affymetrix MG-U74A) from NOS-/- mice using robust multi-array average (RM...

متن کامل

Pathological cardiac hypertrophy alters intracellular targeting of phosphodiesterase type 5 from nitric oxide synthase-3 to natriuretic peptide signaling.

BACKGROUND In the normal heart, phosphodiesterase type 5 (PDE5) hydrolyzes cGMP coupled to nitric oxide- (specifically from nitric oxide synthase 3) but not natriuretic peptide (NP)-stimulated guanylyl cyclase. PDE5 is upregulated in hypertrophied and failing hearts and is thought to contribute to their pathophysiology. Because nitric oxide signaling declines whereas NP-derived cGMP rises in su...

متن کامل

Angiotensin-(1-7) attenuates hypertension in exercise-trained renal hypertensive rats.

Angiotensin-(1-7) [ANG-(1-7)] plays a counterregulatory role to angiotensin II in the renin-angiotensin system. In trained spontaneous hypertensive rats, Mas expression and protein are upregulated in ventricular tissue. Therefore, we examined the role of ANG-(1-7) on cardiac hemodynamics, cardiac functions, and cardiac remodeling in trained two-kidney one-clip hypertensive (2K1C) rats. For this...

متن کامل

Heart Failure Pathological Cardiac Hypertrophy Alters Intracellular Targeting of Phosphodiesterase Type 5 From Nitric Oxide Synthase-3 to Natriuretic Peptide Signaling

Background—In the normal heart, phosphodiesterase type 5 (PDE5) hydrolyzes cGMP coupled to nitric oxide– (specifically from nitric oxide synthase 3) but not natriuretic peptide (NP)–stimulated guanylyl cyclase. PDE5 is upregulated in hypertrophied and failing hearts and is thought to contribute to their pathophysiology. Because nitric oxide signaling declines whereas NP-derived cGMP rises in su...

متن کامل

Neuronal nitric oxide synthase in hypertension – an update

Hypertension is a prevalent condition worldwide and is the key risk factor for fatal cardiovascular complications, such as stroke, sudden cardiac death and heart failure. Reduced bioavailability of nitric oxide (NO) in the endothelium is an important precursor for impaired vasodilation and hypertension. In the heart, NO deficiency deteriorates the adverse consequences of pressure-overload and c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Circulation

دوره 107 10  شماره 

صفحات  -

تاریخ انتشار 2003